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" Vapor-Liquid Equilibria at Hign

CHUE-PL 67-0723

Pressures: Calculation of Partial
Molar Volumes in Nonpolar

Liquid Mixtures

P. L. CHUEH and J. M. PRAUSNITZ
University of California, Berkeley, California

Thermodynamic analysis of high-pressure vapor-liquid equilibria requires information on
the effect of pressure on liquid phase fugacities; this information is given by partial molar
volumes in the liquid mixture. A method for predicting these partial molar volumes is pre-
sented here. First, molar volumes of saturated liquid mixtures are computed by extending

to mixtures the corresponding states correlation of Lyckman and Eckert.

These mixture

volumes are then used to calculate partial molar volumes with an expression based on a
modification of the Redlich-Kwong equation. At high pressures partial molar volumes are
strong functions of the composition and in the critical region, may be positive or negative.
Calculations are sensitive to the characteristic energy between dissimilar molecules; this
energy is generally lower than that given by the geometric-mean rule. Calculated results are
in good agreement with experimental data for seven systems containing paraffinic and aro-

matic hydrocarbons, carbon dioxide, and hydrogen sulfide.

To be useful, a thermodynamic treatment of high-pressure
vapor-liquid equilibria must describe how the fugacity of
each component, in each phase, depends on the tempera-
ture, pressure, and composition. In the vapor phase, this
dependence is given by the fugacity coefficient which can
be found from vapor-phase volumetric properties as given
by an equation of state. In the liquid phase it is more con-
venient to express the fugacity of a component as the prod-
uct of the mole fraction, an arbitrary standard state fugac-
ity and an activity coefficient; the effect of temperature,
pressure, and composition on the fugacity of a component
in the liquid phase is determined by the effect of these
variables on the activity coefficient. In this work we are
concerned with the effect of pressure on the activity co-
efficient.

At low or moderate pressures, liquid-phase activity co-
efficients are very weakly dependent on pressure and, as
a result, it has been customary to assume that, for practi-
cal purposes, activity coefficients depend only on tempera-
ture and composition. In many cases this is a good as-
sumption but for phase equilibria at high pressures,
especially for those near critical conditions, it can lead to
Serious error.

When the standard state fugacity is defined at a constant
pressure, then for any component i the pressure dependence
of the activity coefficient y; is given exactly by

On the other hand, when the standard state fugacity is

defined at the total pressure of the system, Equation (1)
must be modified to
17,‘ - Uio

(a In y,'> B
P /r. RT

By judicious choice, it is sometimes possible to use a
standard state such that 7; = v;°, in which case the activ-
ity coefficient is very nearly independent of pressure (17).
However, since 7; is a function of composition, whereas
v;° is not, such a happy choice of standard state can make
the right-hand side of Equation (2) very small over only a
narrow range of composition. At high pressures in the
critical region, v; is usually a strong function of composi~
tion, especially for heavy components where v; frequently
changes sign as well as magnitude.

Experimental activity coefficients obtained at P, the
total pressure of the system, can be corrected to a con-
stant, arbitrary reference pressure P” by integration of
Equation (1):

(1a)

r Py
yi(P I y,-(P) expf L apr )
p R
Equation (2) defines adjusted, pressure-independent ac-

r
tivity coefficients yi(P ), which at constant temperature,

dlny; Ui satisfy the isobaric, isothermal Gibbs-Duhem equation. It
( 3P > = IF (1) is advantageous to use such adjusted activity coefficients
Tix since their composition dependence can be expressed by
Vol. 13, No. 6 / " AIChE Journal
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simplc algebraic functions such as those of Margules,
van Laar, etc. Through Equation (2) the effect of pressure
is separated from the effect of composition and, as a result,
interpretation and correlation of phase equilibrium data are
very much facilitated (18).

Experimental data for partial molar volumes are rare for
binary systems and for multicomponent systems there are
essentially none. Since thermodynamic analysis or predic-
tion of multicomponent high-pressure phase equilibria re-
quires partial molar volumes, we require a reliable method
for calculating partial molar volumes from a minimum of
experimental information. In the following, we present
such a method, applicable up to critical compositions, for
calculating partial molar volumes in multicomponent liquid
mixtures at saturation.

PARTIAL MOLAR VOLUME FROM AN
EQUATION OF STATE

The partial molar volume of component k in a mixture of
N component is defined by

B (a_v) @)
Nk Jp, Tynitizk)

The partial molar volume can be evaluated from a suit-
able equation of state for the liquid mixture. Since most
equations of state are explicit in pressure, rather than in
volume, it is convenient to rewrite Equation (3):

T\ T,y k)
T = -ap—'—l:—-=f(x, T,v) (4)
(a‘/>T,ni(all i)

With an equation of state, Equation (4) gives 7} as a func-
tion of the composition, temperature, and molar volume of
the liquid mixture. Pressure does not appear explicitly in
Equation (4), but is implicit in the volume which depends
on the pressure.

For practical applications in vapor-liquid equilibria, we
require partial molar volumes at saturation; therefore, we
need the saturated molar volume of the liquid mixture in
Equation (4). Before discussing Equation (4) in more de-
tail, we describe a method for calculating the molar volume
of a saturated liquid mixture.

SATURATED MOLAR VOLUME OF LIQUID MIXTURES
UP TO A REDUCED TEMPERATURE OF 0.93

Given only the temperature and composition, it is pos-
sible, in principle, to calculate the saturated volume of a
liquid mixture from an equation of state. Such a calcula-
tion, however, requires an equation of state capable of de-
scribing accurately both vapor and liquid phases of multi-
component systems. For a wide variety of mixtures, no
such equation of state is known. (In fact, the entire prob-
lem of phase equilibria at any pressure could be completely
solved if such an equation of state were available.) A
more realistic and fruitful approach is provided by a corre-
sponding-states correlation specifically developed for
saturated liquids. Such a correlation was given by Lyck-
man and Eckert (11), who slightly revised Pitzer’s
tables (I5) for the saturated liquid volume of pure sub-
stances. In this correlation, the reduced saturated volume
is given by

vg = 8 + 0 vd" + 0* yf? ©)
where @ is the acentric factor (15, 19) and vg®, vg", and
vg?) are functions of reduced temperature which have been
tabulated for reduced temperatures from 0.560 to 0.990 (11).
To facilitate calculations with an electronic computer, we
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TABLE 1. COEFFICIENTS IN EQUATION (6) FOR REDUCED
VOLUMES OF SATURATED LiQuipnst

o b RO a0 o £

]

0 0.11917 0.009513 0.21091 -0.06922 0.07480 —0.084476
1 0.98465 —1.60378 1.82484 -0.61432 —0.34546  0.087037
2 -0.55314 -0.15793 -1.01601 0.34095 0.46795 —0.239938

T For reduced temperatures from 0.560 to 0.995.

fitted the tabulated values with the following relation:
v = @i + B Tp + D TE + dP T + )/Tg +
f91 0 -Tg) (6)

where @) to fU) are coefficients for uR(°), u,é‘) and ”R(z);
these coefficients are given in Table 1.

The reducing parameters for the reduced volume and the
reduced temperature are the critical volume and the critical

- temperature, respectively. For UR(O)’ Equation (6) agrees

with the originally tabulated values to the fourth significant
figure; for vR‘) and UR(’) it agrees within *1 in the fourth
significant figure. For pure components, Equations (5)
and (6) may be used for reduced temperatures from 0.560 to
0.995. For reduced temperatures above 0.995, the reduced
volume may be obtained by first calculating the reduced vol-
umes at T of 0.990 and 0.995, and then interpolating to
Tr = 1.0; by definition vp = 1.0 at Tg = 1.0.

Equations (5) and (6) were obtained from pure component
data. For application to mixtures, mixing rules for the
pseudocritical volume and temperature are necessary. For
pseudoreduced temperatures up to 0.93 we suggest the fol-

lowing rules:
UcM = Z XiVc; _ )]

. Z Z O, T, (8)
Wy = Z D w; (9)

where
Xk Vcy

e (10)

Z""”fi
i
gy Yoy Toy =Ky an

)]

Because of the small separation between molecules, mo-
lecular size is a more important factor in the liquid phase
than in the vapor phase. Therefore, in Equations (8)
and (9), we use volume fractions rather than mole fractions
(or combinations of mole fractions and volume fractions)
which were used in previous pseudocritical rules (6, 8,
10, 20, 26).

The constant k;; has an absolute value much less than
unity; it represents the deviation from the geometric-mean
rule for the characteristic temperature of the i-j pair. To
a good approximation, k;; is a constant independent of
temperature and density. The binary constant k;; must be
evaluated from some binary data (for example, second virial
coefficients or solubility), which give information on the
nature of i-j interactions. Table 2 gives some of the kij
values used in this work. These values, although obtained
from liquid phase measurements, are in good agreement
with those obtained by Gunn (20) from second virial cross
coefficients, and with those reported by Pitzer and Hult-
gren (16) from compressibility factors near the critical
region. For paraffin-paraffin systems, experimentally de-
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TABLE 2. COMPARISON OF CALCULATED AND EXPERIMENTAL SATURATED MOLAR L1QUID
VOLUMES OF BINARY MIXTURES AT HIGH PRESSURES

(Reduced temperature <0.93)

* OT,
System kya F.

(e8] (2)

100
n-Butane=carbon dioxide 0.20 160
© 220

Propane-methane A 0.20 1 38
100

130

n-Butane-methane 0.04 160
y 190

220

100
160
220
280

10
Propylene=ethanet 0.02 40
100

100
160
0.03 220
280
340
400

40
100

n-Pentane-methane 0.06

Benzene=propanet

Hydrogen sulfide=methane 0.04

Pressure range, %, % Deviation
1b./sq. in. abs. (Tp =0.93) Avg. Max.

51.5 to 800
120.6 to 900
241.2 to 600

79 to 1,200
189 to 950

51.5 to 1,700

80.6 to 1,600
120.6 to 1,400
174.4 to 1,100
241.2 to 800

15.7 to 2,300
42.5 to 2,100
94.9 to 1,600
185.6 to 900

58 to 255
96.4 to 385
227.3 to 470

3.2 to 189
11.1 to 384
29.2 to 520
64.7 to 630

126.0 to 710
222.1 to 630

169 to 1,770
394 to 1,500

PN =NNWhAWU DO =B O

o000 9290000 9292 299
O 408 NN ON Do

(=]
al |

WO PR OL BN PNRNN- VRPN 9 PR
N ORm O 000 FNED FNNNE == OO0~

.

°o oooor

W NSO
0w b

*Critical constants for pure components taken from the compilation of Kobe and Lynn (9) uniess otherwise
noted. Experimental data of binary systems are taken from Sage et al. (24, 25).

tCritical volume of ethane is 2.27 cu. ft./lb.-mole as reported by Din (5).

fCritical volume of benzene is 4.06 cu, ft./lb,-mole as reported by Bender et al. (1).

termined k;;’s are in good agreement with the semitheoreti-

cal relation
/ n
g 1 vei vef 12)
g2l S
(W + v /2

Equation (12) follows from London’s theory of dispersion
forces, neglecting small differences in ionization poten-
tials, In agreement with Reid and Leland (23), we found
that n =3 gives better results than the theoretical value
n =6, Equation (12), however, is useful only for mixtures
of paraffins; for other systems it may lead to large errors.

The saturated liquid volume of a multicomponent mixture
may be calculated with Equations (5) and (6) and Equa-
tions (7) through (11). The pseudocritical rules, Equa-
tions (7) and (8), were found to give good predictions for
T <0.93. For larger Tg (critical region) a modification
of the pseudocritical rules is required, as indicated later.

Figures 1 and 2 show calculated saturated liquid vol-
umes for two systems, n-butane-carbon dioxide and pro-
pane-methane, each at three different temperatures; the
calculated results are compared with experimental data of
Sage and Lacey (21, 24, 25). These figures include the
calculations in the critical region to be discussed later.
The agreements are quantitative over the relatively wide
temperature range.

At 160°F. n-butane is subcritical. As the mole fraction
of carbon dioxide rises, the molar volume of the liquid mix-
ture decreases at first, primarily because of the introduc-
tion of the smaller molecules of carbon dioxide and partly
because of the increase in pressure; meanwhile, the re-

duced temperature increases due t6 the lower critical
temperature of carbon dioxide. At an intermediate com=
position, the effect of increasing reduced temperature
dominates the effect of smaller molecular size and higher
pressure, and the '‘molar volume of the mixture increases
sharply toward its critical value. At high concentrations,
the supercritical carbon dioxide expands or dilates the
subcritical n-butane. This dilative effect becomes particu-
larly pronounced in the critical region; it has been dis-
cussed previously in our development of a modified van Laar
equation suitable for high-pressure vapor-liquid equi-
libria (3).

At a lower temperature, say 100°F., carbon dioxide is
only slightly supercritical, whereas n-butane is well below
its critical temperature. At 100°F. the effect of dilation
therefore does not become important until very near the
critical composition. On the other hand, at a higher tem-
perature (220°F.) the heavier component, n-butane, is al-
ready close to its critical temperature and therefore is
much more sensitive to the dilative effect of the super-
critical carbon dioxide. At 220°F. the molar volume of the
mixture increases soon after the introduction of carbon di-
oxide. Similar behavior is observed in the propane-
methane system.

The characteristic parameter k;; is very important in
these calculations. To illustrate, Figure 3 shows the
saturated liquid volumes for n-butane-carbon dioxide mix-
tures, calculated with and without correction to the
geometric-mean for Tc”. For this system, the geometric-
‘mean assumption is a poor one as was noted previously by
Joffe and Zudkevitch (7).
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Fig. 2. Saturated liquid molar volumes of propane-methane mix-
tures.
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Table 2 summarizes the results of calculations for seven
binary systems, including those containing carbon dioxide,
hydrogen sulfide, and aromatic hydrocarbons. The average
deviation and maximum deviation for all twenty-five iso-
therms are small, and are probably of the same order of
magnitude as the uncertainty in the experimental data.
The rather good agreement for the system n-pentane=-
methane (where the ratio of pure component critical vol-
umes is a little more than three) seems to indicate that the
difference in molecular sizes can be adequately taken into
account by using volume fractions (rather than mole frac-
tions) in the mixing rules, Equations (8) to (10).

With a reliable method for calculating the volumes of

~saturated liquid mixtures, we proceed now to calculate

partial molar volumes with Equation (4) which requires an
equation of state for liquid mixtures.

EQUATION OF STATE FOR LIQUID MIXTURES

For nonpolar liquids, an equation of the van der Waals
type provides a reasonable description of volumetric prop-
erties. Since the Redlich and Kwong equation (22) repre-
sents a useful modification of van der Waals’ equation, we
propose to use this equation for liquid mixtures with cer-
tain alterations. The Redlich and Kwong equation of
state is

RT a

- 13
v-b T* u(v+b) (2

P=

For any pure fluid, the two constants @ and b can be related
to the critical properties of that fluid by

QaRI TCZ.S
P il (14)
PC
Q,RT,
ba (15)
PC

where ), and 0, are dimensionless constants. If the con-

24
O DATA OF SAGE AND LACEY
) —— CALCULATED WITH k= 0.2
e ——— CALCULATED WITH k;=0
Ea2
< Tep=VTe, Tep (1=K
&
3
2.0 CRITICAL
w
=2 I
=)
51 |
S 1.8 :
= \ / I
)
a N\ |
516 \‘\ :..07’/ l
3 N i
S N\ !
@ N |
= N }
= N 1
3‘) \\ |
~_
1.2
0 0.2 04 06 0.8 1.0

MOLE FRACTION CO;

Fig. 3. Saturated liquid molar volume calculated with and without
correction to geometric mean for Tcy2 (n-butane—carbon dioxide at
160°F.).
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TABLE 3. ACENTRIC FACTORS AND DIMENSIONLESS
CONSTANTS IN THE REDLICH AND KWONG EQUATION
OF STATE FOR SATURATED LIQuiDs

w Qa Qp
Methane 0.013 0.4546 0.0872
Nitrogen 0.040 0.4540 0.0875
Ethylene 0,085 0.4290 0.0815
Hydrogen sulfide 0.100 0.4220 0.0823
Ethane 0.105 0.4347 0.0827
Propylene 0.139 0.4130 0.0803
Propane 0.152 0.4138 0.0802
iso-Butane 0.187 .0.4100 0.0790
Acetylene 0.190 0.4230 0.0802
1-Butene 0.190 0.4000 0.0780
n-Butane 0.200 0.4184 0.0794
Cyclohexane 0.209 0.4060 0.0787
Benzene 0.211 0.4100 0.0787
iso-Pentane 0.215 0.3970 0.0758
Carbon dioxide < 0.225 0.4184 0.0794
n-Pentane 0.252 0.3928 0.0767
n-Hexane 0.298 0.3910 0.0752
n-Heptane 0.349 0.3900 0.0740
n-Nonane 0.447 0.3910 0.0738

2
ditions at the critical point (0_P> =0 and a—P =0
aU Tc‘ aUZ TC

are imposed, Q,=0.4278 and , = 0.0867 for all fluids.
Adoption of these values is equivalent to fitting the equa-
tion of state to experimental results in the critical region
which, although the most sensitive, does not provide the
best fit over a wide range of conditions. This is particu-
larly true when the equation is applied to the liquid phase.
If we accept universal values for Q, and Q,, we are, in
effect, subscribing to a two-parameter theorem of corre-
sponding states. However, Pitzer and others (I2 to 15)
have shown that the theorem of corresponding state re-
quires a third parameter in order to be applicable to a wide
class of substances. We propose, therefore, for each pure
liquid, to fit the Redlich-Kwong equation to the P-V-T data
of the saturated liquid and to evaluate the best 1, and
for each pure component. Fortunately, such data are
readily available; results are given in Table 3 for nineteen

-common liquids. They differ slightly from the universal

values, and show a trend with respect to acentric factor.
For application of Equation (13) to mixtures, we propose
the following mixing rules:

a4 = Z Z x;x,-a,'i [a” ;‘ (a;a/)v'] (16)
i ]

b= xib; an

where
Q,,t.R’ Tc’i"
ci
Qb,.R T,
b; = o (19)
ci

1
7 Qai + Qo) RTEE e, + ve)

a,~,- = (20)
0.291 - 0.04 (w,- + w,-)

PARTIAL MOLAR VOLUMES

The partial molar volume can be obtained from Equa-
tion (13) and the mixing rules, Equations (16) and (17),

Vol. 13, No. 6 ’

AIChE Journal

© ¢ FROM VOLUMETRIC DATA

- OF SAGE et al.
CARBON |
DIOXICB I
|

[
—— CALCULATED }
|

H

N

I

CRITICAL

(@]

|
n
B
4
—Or=k

n—BU

PARTIAL MOLAR VOLUMES, cu.ft/lb. mole

=40 02 04 06 o8

MOLE FRACTION CARBON DIOXIDE

Fig. 4. Partial molar volumes in the saturated liquid phase of the
n-butane—carbon dioxide system at 160°F.

after performing the partial differentiation indicated in
Equation (4):
2<Z X; Qg )— abk/(v + b)

RT by, i
1+ - )
_ v—->b v->b v(v + b)T%
Vg = p (21)
RT a [ 20+ b ]

(w=-b)? T%|vi(w+ b)?
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Fig. 5. Partial molar volumes in the saturated liquid phase of the
propane-methane system at 100°F,
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Using v, the saturated liquid molar volume of the mixture,
calculated previously, and Equations (16) through (20), one
can readily calculate the partial molar volume of each com-

ponent in a multicomponent ligquid mixture from Equa- -

tion (21). A computer program for performing the calcula-
tion is available (2).

Figures 4 and 5 show calculated partial molar volumes
in the saturated liquid phase of the systems n-butane-
carbon dioxide and propane-methane, including the critical
region to be discussed later. The calculated values are
compared with those computed from the volumetric data of
Sage and Lacey (25). Agreement between calculated and
experimental values is quantitative for both systems. The
partial molar volumes of the lighter component (super-
critical in these cases) and the heavier component show
very different behavior in the critical region even for a
system as simple as propane-methane, The partial molar
volume of the lighter component approaches a large posi-
tive value, due to its dilative effect, and that of the heavier
component approaches a large negative value, due to its
condensing effect. As a result, pressure has exactly op-
posite effects on the activity coefficients of the lighter
component and the heavier component, as indicated by
Equation (2). The simple approximation of using partial
molar volumes at infinite dilution leads to large error near
the critical region.

Also shown in Figure 5 are the partial molar volumes
calculated with the universal values $,=0.4278 and
Q,=0.0867. The results are much less satisfactory,
indicating the need for evaluating Q, and Q, for each pure
saturated liquid.

In a multicomponent system, the partial molar volume of
each component depends on the liquid composition in a
complex manner. Figures 6 and 7 show calculated saturated
liquid volumes and partial molar volumes for the system
n-pentane-propane-methane,* including the critical region.

CRITICAL REGION

In applying previously proposed pseudocritical rules to
the critical region, it has often been found necessary to in-

*For pentane=-propane, k;; =0.01, v;; =—1.018 cu. ft./Ib.-mole
and T;;=7.0°R.
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troduce an empirical exponent which depends on the prox-
imity to critical conditions (10, 20). In the following, we
introduce a general proximity function which corrects the
pseudocritical rules of Equations (7) and (8) in the critical
region.

By definition, Tg = 1.0 and vg = 1.0 at the critical point
when the true critical constants of the mixture are used as
the reducing parameters. Therefore, if the true criticals of
a mixture can be calculated, the mixing rules, Equations (7)
and (8), can be modified such that they will always con-
verge to Tg = 1.0 and vg = 1.0 at the critical point. In the
following, we use primes to indicate corrected pseudocriti-

cals. Let
T =Tem + (Top = T D (TR) 22)

and

I

vim = vem + (et = vew) D (Tr) 23)
where T, and vt refer to the true critical temperature and
true critical volume of the mixture, respectively. The sec-
ond terms on the right-hand sides of Equations (22) and
(23) correspond to the corrections added to the simple mix-
ing rules, Equations (7) and (8). The function D (Tr) rep-
resents the proximity of the system to its critical point; it
must satisfy the two boundary conditions

D(Tg) — 0 for Tg <0.93 (24)
D(Tr)=1 at Tp=1.0 25)

The first boundary condition ensures that Equations (22)
and (23) reduce to the simple mixing rules, Equations (7)
and (8), for Tg £0.93. The second boundary condition en-
sures that they converge to T/y = Tor and viy = ver at
the critical point. We suggest the following empirical func-
tion which satisfies the above boundary conditions:

2 _ _ l . r=10
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Fig. 7. Calculated partial molar volumes in the saturated liquid
phase of the n-pent (1)—prop (2)-methane (3) system at
100°F.
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TABLE 4. COMPARISON OF CALCULATED AND EXPERIMENTAL SATURATED MOLAR LIQUID
VOLUMES OF BINARY MIXTURES IN THE CRITICAL REGION

(Reduced temperature 0.93 to 1.00)

Vias ;tlz ’
System* cu. ft./lb. mole R.
1 2
n-Butane-carbon dioxide -1.25 —-46.4
Propane-methane -~ =0.875 89.7
n-Butane-methane -1.96 ,101.3
n-Pentane-methane -2.35 141.4
Propylene-ethane -0.273 -4.7
Benzene-propane -0.690 22.1
Hydrogen sulfide-methane -0.958 29.3

T,

°F.

100
160
220

40
100
160

100
130
160
190
220
250

100
160
220
280
340

100
160

280
340

400 -

40

" 100

160

% Deviation

Pressure range, Xa
Ib./sq. in. abs., (critical) Avg. Max.
800 to 1,057 0.954 2.3 4.3
900 to 1,020 0.713 0.7 1.4
600 to 942 0.498 0.7 3.0
1,200 to 1,474 0.7459 1.6 7.6
950 to 1,353 0.5882 1.0 4.9
384 to 1,020 0.3228 1.2 5.9
1,700 to 1,912 0.7236 1.6 4.5
1,600 to 1,876 0.6718 1.6 3.4
1,400 to 1,810 0.6165 2.2 2.8
1,100 to 1,698 0.5503 3.4 5.1
800 to 1,520 0.4722 4.6 9.5
327.7 to 1,264 . 0.3602 3.3 10.3
2,300 to 2,455 0.8236 2.5 S.2
2,100 to 2,338 0.7665 2.6 3.7
1,600 to 2,081 0.6705 3.1 4.7
900 to 1,610 0.5211 2.3 3.2
330 to 1,025 0.2950 0.9 2.1
470 to 722 0.9300 0.8 2.5
455 to 705 0.3500 2.8 10.5
630 to 750 il 0.8 1.3
710 to 850 T 1.4 1.6
630 to 850 T 0.7 2.8
1,770 to 1,949 0.5500 3.1 4.2
1,500 to 1,907 0.3880 2.2 5.2
779 to 1,660 0.2090 1.6 7.3

*k,, given in Table 1. Experimental data of binary systems are taken from Sage et al. (24, 25).

TNo critical composition reported.

D(Tp) =exp [(TR = 1) (2901.01 —-5738.92 Tg +

2849.85 Tg? + M)] 6)

1.01 - Tg

Equation (26) was found to be sufficiently general for all
systems investigated. The reducing parameter for Tg in
Equation (26) is the corrected pseudocritical temperature
T/y rather than the true critical temperature which is ade-
quate at the critical point only. As a result Ty appears
on both sides of Equation (22) and iteration is required to
solve for T/y. This is best done by rewriting Equation (22):

[(T/TCM) 1] [(T/TcM)
Tis (T/T.7)

Equation (27) has only one unique solution for Tp < 1.0
which can be readily found by a numerical technique (for
example, Reguli-falsi iteration with variable pivoting
points). The method usually converges in a few iterations.
From Equation (23), vy can then be obtained by direct
substitution.

Equations (22) and (23) may be considered as more gen-
cral pseudocritical rules applicable over the whole temper-
ature range up to the critical point. With the corrected
pseudocritical constants, the saturated molar volumes of
liquid mixtures can be calculated from Equations (5) and
(6) in the manner discussed before.

Figure 8 compares reduced temperatures and reduced
volumes calculated for the system n-butane-carbon dioxide
at 100°F., with the corrected pseudocriticals, Equations (22)
and (23), and the uncorrected pseudocriticals, Equations (7)
and (8). Whereas Tg and vy based on corrected pseudo-
criticals converge to the right limit at the critical compo-
sition, those based on the uncorrected pseudocriticals at-

- 1] D(TR) =0 27

Vol. 13, No. 6 /
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1.0 T T 1 T
- === UNCORRECTED |
CORRECTED |
o8| ! b
I'
Vr /
/
06— —
04 | l L X
I.1 T T 1 T
//’
1.0 = “
TR
osl- .
08 Il | | L

0o 0.2 04 06 0.8 1.0
MOLE FRACTION CO2 IN SATURATED LIQUID

Fig. 8. Reduced temperature and reduced volume in the critical re-
gion with corrected and uncorrected pseudocritical constants (n-bu-
tane—carbon dioxide at 160°F.).
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tain unreasonable values before reaching the critical
composition. In the critical region, a small error in the
reduced temperature produces a very large error in the cal-
culated mixture volume as shown in Figure 8.

The true critical temperature and volume of mixtures, as
needed in Equations (22) and (23), can be calculated from a
correlation discussed in detail in reference. 4, The true
critical constants are related to the composition by ex
pressions using the surface fraction 6:

ver = Zo,-vc,. + Z ZO.' 0; vij,
i j

i

Ter = Z@,- Tt‘i + Z Z 0;0; :IT,',', (T;:=0) (29)

1 7

ii=0 @28

where 4
A
Xk Ve

Z %
3
X; Ve

i

0y = (30)

The correlating parameters v;; and T,; are measures of the
(small) deviations of the mixture criticals as given by a
linear dependence on the € fraction; they are characteristic
of the i-j pair. Table 4 gives v,, and T,, for the seven
systems investigated in this work. More extensive com-
pilations of these parameters are given in the following
paper (4).

Table 4 also summarizes calculations of saturated liquid
volumes in the critical region for seven systems and twenty-
five isotherms. In the critical region, deviations are larger
than those found in the region where Tg < 0.93. Most of
the largest deviations occur in the immediate vicinity of
the critical point where experimental results are most
likely to be in error. For example, Reamer et al. (21) re-
ported that the accuracy of their liquid-phase mole frac-
tions was about 0.013 mole fraction. If the critical mole
fraction is known within +0.013, this uncertainty causes
an error of about 5% in the critical volume.

In the critical region the calculations are strongly de-
pendent on the accuracy of the calculated true critical
temperature. An error of 0.5% in the calculated true criti-
cal temperature may cause an error of more than 5% in the
calculated volume. The reduced volume is a very sensi-
tive function of reduced temperature in the critical region;
for a simple fluid (o = 0), the reduced volume at Tr = 0.99
is 0.7327, whereas at Tg =1.00, vg =1.0 by definition.
Thus, near the critical point, a 1% change in reduced tem-
perature causes a change in reduced volume of about 30%.
This extreme sensitivity of volumetric properties to small
changes in temperature or composition is an inherent na-
ture of the critical state and cannot easily be eliminated,
neither by experiment nor by calculation,

Once the saturated liquid volume is known, partial molar
volumes can be calculated from Equation (21) in exactly
the same manner as that discussed before, Calculated par-
tial molar volumes in the critical region are shown in Fig-
ures 4, 5, and 7 for the binary systems n-butane-carbon
dioxide and propane-methane, and for the ternary system
n-pentane-propane-methane.

CONCLUSION

This work presents a method for predicting partial molar
volumes in a multicomponent liquid mixture at saturation,
Calculated partial molar volumes depend strongly on the
liquid composition, especially in the critical region where
the partial molar volume of the heavier component may
change sign. Calculated results are in quantitative agree-
ment with the limited experimental data now available.

The calculations are sensitive to the characteristic en-
ergy between two dissimilar molecules which, in general,
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is lower than that given by the geometric mean. These char-
acteristic energies have been determined for a number of
systems from several binary data sources, such as second
virial cross coefficients and binary saturated liquid vol-
umes. For a given binary system, characteristic energies
found from different sources generally agree well with each
other.

With partial molar volumes, the effect of pressure on lig-
uid-phase activity coefficients can be taken into account.
By separating the effect of pressure from that of composi-
tion, one can subject experimental liquid phase activity co-
efficients to rigorous thermodynamic analysis. Such analy-
sis permits meaningful interpretation and correlation of
binary, high-pressure, vapor-liquid equilibrium data and
facilitates prediction of multicomponent phase behavior,
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NOTATION
a,b = constants in Redlich and Kwong equation of
state

k;; = characteristic constant for i-j interaction
n; = number of moles of component k in the mixture
P = total pressure
P, = critical pressure
R = gas constant
T = temperature
T, = critical temperature
T.y = pseudocritical temperature of a mixture
T/ym = corrected pseudocritical temperature of a mixture
T.7 = true critical temperature of 4 mixture
Tr =reduced temperature
V = total volume of a liquid mixture
v = molar volume of liquid or liquid mixture
vy, = partial molar volume of component k in the liquid
phase
ven = pseudocritical volume of a mixture
viy = corrected pseudocritical volume of a mixture
ver = true critical volume of a mixture
vp =reduced volume
uéi) = generalized reduced molar-volume function of
saturated liquid, as defined by Equation (6)
x =mole fraction in liquid phase
yk(P) = activity coefficient of component k at pressure P

Py _ a s -
Yk = activity coefficient of component k at some con-
stant reference pressure
0 = surface fraction as defined by Equation (30)
v;; = correlating parameter for true critical volume of
i-j binary
T;; = correlating parameter for true critical temperature
of i-j binary
® = volume fraction as defined by Equation (10)
04,0, = dimensionless constants in Redlich and Kwong
parameters as defined by Equations (14) and (15)
o = acentric factor

Subscripts

¢ =critical
i, il = component i

J,jJ = component j
ij = i-j pair
M = mixture

R =reduced quantity

Superscript
0 = standard state
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Vapor-Liquid Equilibria at High
Pressures: Calculation of Critical
Temperatures, Volumes, and
Pressures of Nonpolar Mixtures

P. L. CHUEH and J. M. PRAUSNITZ

University of California, Berkeley, California

An analysis of critical data for a large number of binary mixtures of normal fluids shows
that the critical temperature and the critical volume can each be expressed as quadratic
functions of the surface fraction. Each of these functions requires one adjustable parameter
characteristic of the binary pair; for any family of chemical components, these parameters,

upon suitable reduction, follow definite trends.

It was shown that the surface fraction

gives much better correlation than any other size-weighted variable. For the critical pres-

sure, however, no quadratic function was adequate.

slightly altered version of the Redlich-Kwong equation.

To calculate critical pressures, the
correlations for critical temperature and critical volume were used in conjunction with a

Generalizations to systems containing more than two components follow without additional
assumptions. The methods presented in this paper provide good estimates for critical con-
stants of multicomponent mixtures. These are particularly useful for analyzing and corre-

lating vapor-liquid equilibria in the critical region.

The critical properties of pure fluids have received much
attention and as a result of much experimental work, dating
back nearly 100 years (3, 6), as well as semiempirical cor-
relations (56), it is now possible to make good estimates
of the critical temperature, pressure, and volume of most
pure fluids encountered in typical chemical engineering

Vol. 13, No. 6 7
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work. The critical properties of mixtures, however, are not
known nearly as well, although experimental data are avail-
able for a surprisingly large number of binary mixtures (58).

Critical properties of mixtures are required in petroleum
and natural gas engineering and for rational design of sep-
aration equipment and chemical reactors at high pressures.
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The rising use of high pressures in chemical technology
calls for increased knowledge of fluid phase behavior in
the critical region. Since our primary aim is to establish
thermodynamic methods for calculating vapor-liquid equi-
libria at high pressures, including the critical region (see
preceding paper), it is essential to have available methods
for estimating the critical conditions wherein the vapor
phase and the liquid phase become identical.

In this work we present correlations for the critical tem-
peratures and volumes of binary mixtures, and we present
an equation-of-state method for calculating critical pres-
sures using critical temperatures and volumes. In a very
straightforward way, we generalize our results for estimat-
ing critical properties of mixtures containing any number of
components. Our attention is restricted to normal fluids
[as defined by Pitzer (47)]; that is to molecules which have
zero (or small) dipole moments, no tendency to associate
by hydrogen bonding or similar chemical forces, and which
have sufficiently large mass to permit neglect of quantum
corrections. :

Several authors (I, 14, 17, 19, 21, 22, 34, 36, 44, 45,
63, 64) have reported correlations of the critical tempera-
ture or critical pressure of mixtures but these, by and large,
have been confined to a particular chemical class of sub-
stances (usually paraffins). Very little work has been re-
ported on the correlation of critical volumes of mixtures (22).
While the critical volume seldom enters directly into engi-
neering calculations, it is of more fundamental significance
than the critical pressure, and it is needed to provide es-
timates of the very large effect of pressure on liquid phase
activity coefficients in the critical region.

CRITICAL TEMPERATURES

Rowlinson (58) has shown that for a binary mixture of
components 1 and 2, the critical temperature of the mixture
is, to a good approximation, a simple quadratic function of
the mole fraction, provided components 1 and 2 consist of
simple, spherically symmetric molecules of nearly the same
size. Rowlinson writes

900
~.-.~ :
800 =
35 . e
= N\ Sy
w \ \ N
& 700 =
’_
< ALY
L \
< 600 ~
= Y
-
g 500
= —=—=— MOLE FRACTION
g —— SURFACE FRACTION
400
300

0 0.2 0.4 0.6 08 1.0
FRACTION METHANE

Fig. 1. Critical temperatures of the methane—n-pentane system as
a function of mole fraction and of surface fraction.
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Ter=x, Te, + X Tey + 2x,%, AT, (1)

where AT,, is a known function of T, Tc,, ve, and ve,,
and a parameter which depends on the two exponents used
in the potential function for describing the intermolecular
forces. In addition, AT,, depends on the energy character-
istic of the 1=2 interaction; it is common to assume that
this characteristic energy is given by the geometric mean
of the pure-component characteristic energies, but this as-
sumption, unfortunately, can often lead to appreciable error.
The important simplifying element of Rowlinson’s treatment
lies in his assumption of pairwise additivity of intermolec-
ular energies; the potential energy of a multibody assembly
is given by the sum of the potential energies of all nearest
neighbor pairs. As a result, the critical temperature of the
mixture is a quadratic function of the mole fractions.
Rowlinson’s treatment is not useful for mixtures whose
components differ appreciably in molecular size. For such
mixtures, the thermodynamic properties are quadratic func-
tions of the mole fraction only at moderate densities (second
virial coefficients); at liquid-like densities, it has been
common practice to express the thermodynamic properties
of such mixtures in terms of volume fractions. The critical
density is intermediate between that of liquids and that
wherein the second virial coefficient gives a sufficiently
good approximation. We propose, therefore, to correlate
experimentally determined critical temperatures as a qua-
dratic function of the surface fraction 6 defined by

%
i

O m — ot @)

Z : %
Xive}

i
For a binary mixture, the critical temperature is given by
Ter =0, Tc, + 6, Te, + 20,6, T,, (3)

where T,, is a parameter characteristic of the 1-2 interac-
tion. Equation (3) is a one-parameter equation. By ex-
pressing the mixture’s critical temperature as a function of
surface fraction, we find that the quadratic term 20,0,7T,,
makes a comparatively small contribution. For mixtures
whose components differ very much in molecular size, the
contribution of the quadratic term is smaller when surface
fractions are used; it is significantly larger if the critical
temperature is expressed by quadratic functions in mole
fraction.. To illustrate, Figure 1 shows that the critical
temperatures of the methane-n-pentane system are more
nearly linear and symmetric when plotted against surface
fraction rather than mole fraction. As a result, the cor-
relating parameter T,, in Equation (3) is smaller than AT,,
in Equation (1); uncertainties in T,,, therefore, lead to
smaller error than comparable uncertainties in AT,,. For
the methane-n-pentane system the experimental data (62)
are correlated by Equation (3) (using T,, = 78.8°K.) with an
average error of 0.73%. On the other hand, the optimum fit
of the data with Equation (1) (using AT,, = 127.8°K.) pro-
duces an average error of 4.08%.

Equation (3) has been used to correlate the critical tem-
peratures of sixty-five binary systems; Table 1 gives the
parameters T,, in reduced form for these systems. The
average deviation of all experimental and fitted critical
temperatures is 0.4%.

For a given family of chemical systems, the reduced pa-
rameters follow a trend which can form the basis for inter-
polation and cautious extrapolation. For example, for
paraffin-paraffin systems (for which experimental data are
most plentiful) the reduced parameter is a smooth function
of the absolute value of (T¢, - T )/ (T, + Tc,) as illus-
trated in Figure 2. Paraffin-olefin systems follow the same
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TABLE 1. CALCULATED AND EXPERIMENTAL CRITICAL TEMPERATURES, VOLUMES, AND PRESSURES
OF BINARY SYSTEMS

System

Methane-argon
Methane-nitrogen
Methane-oxygen
Methane-propane
Methane-propane
Methane—propane
Methane-n-butane
Methane-iso-butane
Methane-n-pentane
Mecthane-iso-pentane
Methane-n-heptane
Acetylene-ethane
Acetylene—ethylene
Acetylene—propane
Acetylene-propylene
Ethane-propane
Ethane-propylene
Ethane-n-butane
Ethane-n-pentane
Ethane-cyclohexane
Ethane-n-heptane
Ethylene-ethane
Ethylene-propylene
Ethylene-n-heptane
Propane-n-butane
Propane-n-pentane
Propane-iso-pentane
n-Butane-nitrogen
n-Butane-n-heptane
n-Pentane-neo-pentane
n-Pentane=n-hexane
n-Pentane-cyclohexane
n-Pentane-n-heptane
neco-Pentane-n-hexane
nco-Pentane-cyclohexane
n-Hexane-cyclohexane
Benzene-cthane
Benzene=-propane
Benzene-n-pentane
Benzene-neo-pentane
Benzene-n-hexane
Benzene-cyclohexane
Benzene-toluene
Toluene-n-pentane
Toluene-n-hexane
Toluene-cyclohexane
Carbon dioxide=methane
Carbon dioxide-ethane
Carbon dioxide-propane
Carbon dioxide-propane
Carbon dioxide-n-butane
Carbon dioxide-n-butane
Carbon dioxide-n-pentane
Carbon monoxide-argon
Carbon monoxide-oxygen
Carbon monoxide-nitrogen
Carbon monoxide-methane
Carbon monoxide-propane
Hydrogen sulfide-methane
Hydrogen sulfide-ethane
Hydrogen sulfide-propane

Hydrogen sulfide-n-pentane
Hydrogen sulfide~carbon dioxide

Nitrogen-argon
Nitrogen-oxygen
Argon-oxygen

(Critical pressures are calculated from revised Redlich-Kwong equation)

Avg. Dev.
in Ter, %

0.05
0.33
0.51
1539
0.28
0.39
0.81
0.45
0.73
0.02
3.39
0.20
0.84
0.62
0.17
0.13
0.24
0.13
0.73
0.47
0.61
0.17
0.14
0.69
0.12
0.14
0.06
1.80
0.03
0.02
0.06
0.03
0.05
0.09
0.05
0.03
0.82
1.16
0.71
0.44
0.14
0.01
0.03
0.14
0.09
0.04
1.61
0.10
0.99
0.67
0.91
0.74
2.42
0.13
0.07
0.06
0.16
0.20
0.84
0.36
0.04
1.75
0.14
0.08
0.05,
0.03

T‘_.l + Te,

27y, Avg. Dev.

inver, %

0.0044
0.0198 3
-0.0400
0.1237
0.1410 1.9
0.1775
0.1826 1.4
0.1444 0.3
0.2378 3.4
0.1953
0.2773 5.9
—0.0866
-0.0545
-0.0468
-0.0304
0.0211
-0.0078 0.4
0.0267 0.8
0.0438 1.0
0.0695 2.9
0.0743 3.9
0.0006
0.0241
0.0799 4.8
0.0144 1.3
0.0092
0.0088 1.1
0.3500 S
0.0192 1.9
0.0038
0.0031
0.0201
0.0076
0.0064
0.0047
0.0013
0.0526 3.8
0.0264
-0.0066
-0.0258
-0.0182
-0.0128
0.0008
-0.0302
-0.0028 0.0
-0.0061
0.0472
-0.0911
-0.0573
-0.0693 3.0
-0.0313
-0.0707 1.0
0.0156
-0.0015
-0.0005
-0.0054
0.0220
0.3560
0.0577
-0.0683
-0.0748
~0.01689
-0.0666
0.0098
0.0163
-0.0090

opron
00 O W

2v,,

Ve, L Ve,

-0.07

-0.3653
-0.6975
—0.6503
-0.7153

-0.9808

-0.1057

=0.2753 .

-0.5250
-0.5931
-0.6826

-0.8327
-0.0061
-0.2991

-0.95
-0.3042

-0.5588

-0.1141

-0.3418

-0.4513

-0.6063
-0.1279
-0.1746
-0.5030
-0.0760

coooo000:

ocooo
H W=

0.07
0.10

0.06
0.06
0.08
0.10
0.08

Avg. Dev.T
inPcr, % Ref.

24
24,5,11
24
la
61
50
59
43
62
2
54
33
10
38
38
95,

39
26

* % 55
%k . 29
25
37
23
9 28
1 41
1** 60
4 65
0
1

1.4, 1.7

*
*

*
*

*
*

.

ONO‘\IU\IO‘I;)A@W\IQ'—-U'\D
*

57
27
46
46
46
1.4 13
46
46
46
2.6** 31
2.0 20
46
46
46
46
46
46

46, 66
46
2.4 15
33
6.5 48
52
48
7.0 42
48
24
24
24
24
67
51
30
32
53
4
24
24
24

[SRv-I
DTS
el SIS W=}

*Values of k,, are obtained from second virial coefficient (B,,) data or saturated liquid volume data of binary mixtures.
fIn calculating veT and T¢T values of T,, and v,, were taken from this table unless otherwise noted.
No critical volumes of mixtures available for these systems. Values of v,, are back-calculated from critical pressure of mixture.

**Value of v,, for these systems were taken from the smoothed curves of Figure 4.
€This parameter does not follow the trend of other hydrogen sulfide-paraffin systems shown in Figure 2%
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a. METHANE - PROPANE

b. METHANE-n-BUTANE

¢. METHANE-n- PENTANE
d. METHANE - ISOPENTANE
¢. METHANE-n-HEPTANE

ETHANE-CYCLOHEXANE
ETHANE -n-HEPTANE
ETHYLENE-n- HEPTANE
PROPANE- n- BUTANE
PROPANE-n - PENTANE

o | ST

s

PROPANE- ISOPENTANE
n-BUTANE-n- HEPTANE
n-PENTANE-NEOPENTANE

f. ETHANE- PROPANE
¢ ETHANE-n-BUTANE
h. ETHANE-n-PENTANE

PoRIrE—m

0.4 /
0.3 /
2Tz c o¢
TCI+TC2
0.2 PV
&
0.l h T Aok
IRAN 9 .
0 m. i
0 0.1 0.2 03 0.4 0.5
Te,~ Te,
Tc,"’ Tcz

Fig. 2. Correlating parameter t12 for critical temperatures of some
binary systems containing satuated hydocarbons.

trend as paraffin-paraffin systems. Systems containing
acetylene with a paraffin (or olefin), however, do not follow
the paraffin-paraffin curve (see Table 1), due to the large
quadrupole moment of acetylene. Figure 3 gives plots for
paraffin-aromatic, paraffin-carbon dioxide, and paraffin-
hydrogen sulfide systems.

The uncertainties in T,, follow, in part, from experimental
uncertainties. For example, three different investigators
have reported critical temperatures for the system methane-
propane. When fitted to Equation (3), we obtain 2T,/
(T, + Tc,) equal to 0.1775 from reference 50, 0.1410 from
reference 61, and 0.1237 from reference la. When compared
with experimental results for other paraffin-paraffin sys-
tems (Figure 2), it appears that the data of reference la are
the most reliable.

CRITICAL VOLUMES

If we utilize the simplifying assumption that the con-
figurational thermodynamic properties of a dense system

6. BENZENE -ETHANE a. CARBON DIOXIDE - METHANE

b. BENZENE - PROPANE b. CARBON DIOXIDE - ETHANE

c. BENZENE -»-PENTANE c. CARBON DIOXIDE - PROPANE

d. BENZENE- NEOPENTANE d. CARBON DIOXIDE -n-BUTANE

o. BENZENE -a-HEXANE o. CARBON DIOXIDE-a-PENTANE

f. BENZENE - CYCLOHEXANE f. HYDROGEN SULFIDE - METHANE

¢ TOLUENE -n-PENTANE 9. HYDROGEN SULFIDE ~ETHANE

h. TOLUENE -a-HEXANE h. HYDROGEN SULFIDE - PROPANE

L. TOLUENE = CYCLOHEXANE i. HYDROGEN SULFIDE-CARBON DIOXIDE

a2 .

Y y /]V rd
2T Vﬂq/ V44

T‘"T"o f i he I /
ramr L~
h C
-0.1
0 0.l 0.2 03 040 0. 02 03 04
Te,~Te,
Tc,'th

Fig. 3. Correlating parameter 12 for critical temperatures of some
binary systems: |. aromatic paraffin 1l. Carbon dioxide-paraffin Iil.
Hydrogen sulfide-paraffin.
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TABLE 2. AVERAGE PERCENT DEVIATIONS IN CORRELATING
CRITICAL VOLUMES OF BINARY MIXTURES WITH
DIFFERENT WEIGHTING OF MOLECULAR SIZE*

Type of weighting
Mole Diameter Surface Volume

System fract. fract. fract. fract.
Methane-n-heptane 24,27 16.79 5.89 8.06
Methane-n-pentane 7.50 5.09 3.43 4.86
Methane-n-butane 2.70 0.94 1.41 4.14
Methane-iso-butane 4.27 2.36 0.34 2.59
Ethane-benzene 6.09 5.01 3.81 3.39
Ethane-n-heptane 6.16 4.33 3.91 6.54
Ethane-n-pentane 3.34 1.70 0.97 2.97
Ethane-n-butane 1.56 1.03 0.80 0.89
Hydrogen sulfide-n-pentane 2.60 1.79 2.09 5.30

Carbon dioxide-n-butane 2.96 1.99 1.00 2.96

*In each case a one-parameter quadratic function is used for
correlation.

are due to two-body, nearest-neighbor interactions, we can
express the critical volume of a mixture as a quadratic
function of the composition. However, the composition can
be specified in many ways and for components of signifi-
cantly different molecular size, the mole fraction is in-
adequate. As for the critical temperature, we have found
that the surface fraction [Equation (2)] provides the most
useful measure of composition. Table 2 presents average
deviations for the critical volumes of ten systems when
experimental data are fitted to quadratic functions of four
measures of composition: mole fraction, diameter fraction,*
surface fraction, and volume fraction. The surface fraction
gives the minimum deviation. The critical volume of a
binary mixture therefore is written as

ver = 0,vc, + byuc, + 20,00, ()]

where v, is a correlating parameter characteristic of the
1, 2 binary. Experimental data for critical volumes of
binary mixtures are not nearly as plentiful as those for
critical temperatures nor, because of experimental diffi-
culties, are they as accurate. Table 1 gives the parameter
vy, in reduced form as determined from experimental data
for twenty-five systems. For these systems, Equation (4)
correlated the data with an overall average deviation of
1.9%. Since accurate experimental determination of critical
volumes is not simple, this deviation in many cases is of
the same order as the experimental uncertainty.

Figure 4 presents the reduced correlating parameter as a
function of the absolute value of (ucz‘/’ - ucz/’)/(vczl/’-c» Vc:/’)-
Definite trends can be observed for different chemical
families; Figure 4, therefore, should be useful for estimat-
ing critical volumes of systems where experimental data
are lacking. The paraffin-paraffin curve for v,, may be
used for systems consisting of paraffins, olefins, and
acetylenes.

CRITICAL PRESSURES

Having correlated critical temperatures and critical vol-
umes with quadratic functions of the surface fraction, one
is tempted to try a similar correlation for the critical pres-
sure. Such a correlation was tried and failed. Previous
workers (64) have noted that the dependence of the critical
pressure on composition is much more strongly nonlinear

*Diameter fraction weights the mole fraction of component i
with Uc{’.
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b. METHANE-n-BUTANE
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f. PROPANE-n-BUTANE
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¢. METHANE-n-HEPTANE_ 0. CARBON DIOXIDE-PROPANE
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vy ¥

Vc IB - Vc;
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Fig. 4. Correlating parameter viz for critical volumes of some
binary systems.

than that of the critical temperature and the critical vol-
ume; in many systems a plot of critical pressure vs. mole
fraction shows a sharp maximum and a point of inflection.
The more complicated behavior of the critical pressure
follows from its nonfundamental nature; subject to well-
defined assumptions, both critical temperatures and critical
volumes can be related directly to the intermolecular po-
tential, but the critical pressure can be related to the inter-
molecular potential only indirectly through the critical
temperature and critical volume.

To express the critical pressure as a function of compo-
sition, we propose to use our correlations for critical tem-
perature and critical volume coupled with an equation of
state. We have adopted the Redlich-Kwong equation of
state (I) with certain alterations. The Redlich-Kwong
equation is

RT a

v=b Thu(v+b

P= (5)

For a pure component, the constants a and b are related to
the critical temperature and pressure of that component by

- QaRszc:s

6

P, (6)
Q,RT.

b )
PC

The dimensionless constants , and , may be found
(as is commonly done) by equating to zero the first two
isothermal derivatives of pressure with respect to volume
at the critical point. This procedure gives Q, = 0.4278
and Q, = 0.0867. To do so, however, puts a severe strain
on the equation of state, leading to a value of z. which is
too large. Since any two-parameter equation of state is
necessarily approximate when applied to a wide range of
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temperature and density, it is best to determine the dimen-
sionless parameters {1, and (), from experimental data
available in the region of temperature and density where the
equation of state is to be used. Toward that end, we have
previously (7, 9) evaluated the parameter ), for a variety
of fluids from pure-component volumetric data, once for
saturated liquids and once for saturated vapors. For our
present purpose, we use for Q, for each substance the
arithmetic mean of the two values obtained from saturated
liquid and saturated vapor volumes. For a variety of normal
fluids, this ;, may be represented by a function of the
acentric factor o (47, 9):

Q, =0.0867 - 0.0125 @ + 0.011 w* (02w <0.6) (8)

To force agreement for each pure component at the criti-
cal point, Q, is determined by the experimental critical
temperature, pressure, and volume of that component ac-

cording to
RT, P, b
Qa=< < —Pc> CUC(UC+ ) (9)
ve—b (RT)?

where b is given by Equations (7) and (8).
To apply Equation (5) to mixtures, we require mixing
rules for @ and b, We propose, as before (9), to use

a= Z Zx,-xia,-,- (a,‘i ;é\/a,-,-a,-j) (10)
i

b Zx,-b,- an

where ,
Q, RT.2
a;; = ————a'P i (12)
<
Q,.RT..
b; = L i (13)
P,
L @+ Qa)RTA (v, + v
a,-,~ = 4 (14)
0.291 - 0.04 («#; + w;)
PREDICTED
0 0 & DATA OF KAY
1500 , ,
ETHANE-BENZENE
~N
c °
~N
w
2 2501\ ’ \
w \
@
=
3 10
o /- N-ETHANE-HYDROGEN
a SULFIDE
P |
<
2 750
-
T d /\ETHANE-n-BUTANE
Q /
500

0 0.2 0.4 0.6 08 1.0
MOLE FRACTION ETHANE

Fig. 5. Critical pressures of three binary systems containing cthane.

Page 1111



ik S

Page 1112
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~ 1800 /
w
1
=
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w
a
a //
_ ; \
<1000 /
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v
(&) /
600 } |
L&~ | "\ METHANE-NITROGEN
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0 0.2 0.4 0.6 0.8 1.0
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Fig. 6. Critical pressures of three binay systems containing methane.

T‘ii =VTe,; TC”- 1 =k (15)

The constant k;; is a small number (usually positive and
of the order 10~% or 10™") which is characteristic of the i-j
interaction, To a good approximation, it is independent of
temperature, density, and composition; it can be determined
from a variety of experimental data for the i-j mixture in-

6000
o EXPERIMENTAL
PREDICTED WITH k;p=0.12
= —— PREDICTED WITH k.z=0
5000 I ,
S Teis= Ve, Tcp (1-kg)
£ ,’QV
4000 /,. ¥
w \
g / \
L c/r \
w3 7 ¥
@ / \
& / \
S 2000 7
= /,
@ ”
o z7
1000 =
/

0
0 0.2 0.4 0.6 0.8 10
MOLE FRACTION NITROGEN

Fig. 7. Effect of correction to gcometric mean on predicted critical
pressures of the nitrogen—n-butane system. (kj2 obtained from sec-
ond virial coefficient data.)
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cluding second virial coefficients and liquid-phase proper-
ties (8, 9, 16, 49). Table 1 gives k;; for thirty-six systems
as determined from i-j mixture data. (Critical properties of
mixtures were not used.)

Using the equation of Redlich and Kwong together with
the previously established correlations for critical temper-
atures and critical volumes, we calculated critical pres-
sures and compared them with experimental results for the
thirty-six systems listed in Table 1. The mean of the aver-
age deviations is 3.6%. In these calculations, critical
temperatures and volumes of mixtures were calculated from
Equations (3) and (4); experimental critical temperatures
and volumes of mixtures were not used directly in the
Redlich-Kwong equation,

Typical results are shown in Figure 5 for three binary
systems containing ethane and in Figure 6 for three binary
systems containing methane. The system ethane-hydrogen
sulfide is unusual, because, unlike the behavior of most
systems, the critical pressures fall below a straight line
joining the pure component critical pressures.

To illustrate the importance of k;;, Figure 7 gives criti-
cal pressures for the n-butane-nitrogen system. Experi-
mental results are compared with two sets of calculations;
in one set k;; was zero and in the other it was 0.12 as
found from second virial coefficient data (49). Figure 6
shows that marked improvements can be obtained when
small corrections are applied to the (rough) rule that the
temperature characteristic of the 1-2 interaction is given
by the geometric mean of the pure-component critical
temperatures.,

MULTICOMPONENT SYSTEMS

Equations (3) and (4) are readily generalized to mixtures
containing any number of components. The generalized
equations are

Ter=) 0;Te,+ ) ) 0:6;T; 16)
i i

i

VeT = ZO,- Ve . Z Z 0,‘0,'11,']' amn
i i

i

where T;;=v;;=0.

The critical pressure of a multicomponent mixture is
found from the equation of state, Equation (5), with the
mixing rules given by Equations (10) to (15).

For systems containing more than two components, di-
rectly measured critical temperatures and critical pressures
are scarce, and directly measured critical volumes have
not been reported at all. Critical constants obtained by
extrapolation of vapor-liquid equilibrium (K factor) data are
generally not reliable and in some cases may lead to large
error, as pointed out by Sutton (64). With only directly
measured experimental results, calculated and observed
critical temperatures and critical pressures have been com-
pared for six ternary systems (12, 18, 19, 40), two quater-

nary systems (19), and tv'o quinary systems (19). The aver- -

age deviation for the critical temperature was 0.4% and
that for the critical pressure, 4.3%. It appears therefore
that the accuracy for calculating critical constants of mul-
ticomponent systems is very close to that for calculating
critical constants of binary mixtures.

CONCLUSION

With the correlations presented in this work, good esti-
mates can be made of the critical properties of a wide
variety of mixtures of normal fluids (including paraffins,
olefins, acetylene, aromatics, nitrogen, oxygen, carbon
dioxide, and hydrogen sulfide) containing any number of
components, Such estimates should be useful for technical
calculations required in the petroleum, natural gas, and re-
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» lated industries. Since the correlations are in analytical
form, they can gasily be implemented in an electronic com-
puter, Critical temperatures and critical volumes are of
particular interest in establishing techniques for analyzing
and correlating high-pressure vapor-liquid equilibria in the
critical region, as discussed in the previous paper.
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NOTATION

a, b = constants in Redlich-Kwong equation of state
k;; = characteristic constant for i-j interaction
P = pressure
Pc,' = critical pressure of component
P.p =critical pressure of a mixture
R = gas constant
T = temperature
T, = critical temperature of component i
Te;: = characteristic temperature of i-j interaction
TeT = critical temperature of a mixture
v = molar volume .
v¢; = critical volume of component i
veT = critical volume of a mixture
x =mole fraction

Greek Letters

@ = surface fraction
T;; = correlating parameter for critical temperature
v,; = correlating parameter for critical volume
w = acentric factor
Q,4,Q, = dimensionless constants in Redlich-Kwong equa-
tion, as given by Equations (9) and (8)

]

Subscripts

¢ = critical

i, (i = pure component i
ij = i-] pair
M = mixture
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